pyquantus.utc.transforms module
- pyquantus.utc.transforms.computeHanningPowerSpec(rfData: ndarray, startFrequency: int, endFrequency: int, samplingFrequency: int) Tuple[ndarray, ndarray]
Compute the power spectrum of the RF data using a Hanning window.
- Parameters:
rfData (np.ndarray) – RF data from the ultrasound image (n lines x m samples).
startFrequency (int) – lower bound of the frequency range (Hz).
endFrequency (int) – upper bound of the frequency range (Hz).
samplingFrequency (int) – sampling frequency of the RF data (Hz).
- Returns:
frequency range and power spectrum.
- Return type:
Tuple
- pyquantus.utc.transforms.computeSpectralParams(nps: ndarray, f: ndarray, lowF: int, highF: int) Tuple[float, ndarray, ndarray, ndarray]
Perform spectral analysis on the normalized power spectrum. source: Lizzi et al. https://doi.org/10.1016/j.ultrasmedbio.2006.09.002
- Parameters:
nps (np.ndarray) – normalized power spectrum.
f (np.ndarray) – frequency array (Hz).
lowF (int) – lower bound of the frequency window for analysis (Hz).
highF (int) – upper bound of the frequency window for analysis (Hz).
- Returns:
midband fit, frequency range, linear fit, and linear regression coefficients.
- Return type:
Tuple
- pyquantus.utc.transforms.condenseArr(image: ndarray) ndarray
Condense (M,N,3) arr to (M,N) with uint32 data to preserve info
- pyquantus.utc.transforms.expandArr(image: ndarray) ndarray
Inverse of condenseArr
- pyquantus.utc.transforms.int32torgb(color)
Convert int32 to rgb tuple